(4x^2+15x+150)=(3x^2-15x+25)

Simple and best practice solution for (4x^2+15x+150)=(3x^2-15x+25) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4x^2+15x+150)=(3x^2-15x+25) equation:



(4x^2+15x+150)=(3x^2-15x+25)
We move all terms to the left:
(4x^2+15x+150)-((3x^2-15x+25))=0
We get rid of parentheses
4x^2+15x-((3x^2-15x+25))+150=0
We calculate terms in parentheses: -((3x^2-15x+25)), so:
(3x^2-15x+25)
We get rid of parentheses
3x^2-15x+25
Back to the equation:
-(3x^2-15x+25)
We get rid of parentheses
4x^2-3x^2+15x+15x-25+150=0
We add all the numbers together, and all the variables
x^2+30x+125=0
a = 1; b = 30; c = +125;
Δ = b2-4ac
Δ = 302-4·1·125
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{400}=20$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-20}{2*1}=\frac{-50}{2} =-25 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+20}{2*1}=\frac{-10}{2} =-5 $

See similar equations:

| -4x+2=-2x+2 | | 5(x)-4=31 | | 2x–6=14 | | 41/2x-4/3=17/12 | | 10u-3u=35 | | -2.6+5x=7.4 | | 1+3n=4/5n+12 | | 9p÷9=54÷ | | -9g-2g+2g=-20 | | 4/3+3n=4/5n+12 | | -4x-7=9 -23=-2+-3 | | x=2(2x-8)-8x0 | | 3^x-2+9^x-1=84 | | 4u+4u-8u+5u=15 | | x-3=-29+8 | | -14x-16=-78 | | 19t-6t-4t+7t=10 | | 0.07x+0.11(100-x)=8.6 | | 3x-1/3=12 | | v/7-2.2=-13.4 | | X÷3-x÷4=1÷2 | | 4y=-0+12 | | x(2x+4)=156 | | 5/6=x/162 | | 11p16=2p+7 | | 1/4x+1/2=1/9x-1/2 | | 4y=-4+12 | | 5x-15/2x-5=0 | | x^2+8x-83=0 | | 4(u-2)-4=-3(-8u+8)-4u | | 12k=7=31 | | 4(3x-2)=2(x+2) |

Equations solver categories